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Part A: Self-evaluation

1 Background of the cluster

Wiktor Eckhaus, Bert Peletier, and Floris Takens can be seen as the ‘founding fathers’ of thefounding fathers

mathematical field of nonlinear systems in the Netherlands. The formation of the NDNS+
cluster has been a natural step in the evolution of the field of nonlinear systems in the Nether-
lands.

Understanding the emergence of patterns in natural (nonlinear) systems.vision

Understanding the emergence of natural patterns via a combination of nonlinear dynamics,mission

ODE/PDE theory, functional analysis, inverse problems, numerical analysis and scientific com-
puting. Qualitative and quantitative understanding of real-world systems ranging from biolog-
ical systems, through medical applications to systems in earth science and physics.

The strategy of NDNS+ consists of three parts:strategy

1. Studying the mathematical principles underlying broad classes of dynamical systems, in-
cluding coupled ODEs, PDEs, (random) maps, delay equations, networks, hybrid systems,
etc.

2. Developing computational, multi-scale analysis and dimension reduction techniques for
the local and global analysis of large dynamical systems.

3. Combining these fundamental insights and techniques with numerical simulation, obser-
vational data and machine learning, to predict, compute and shape the emergence of
patterns in real-world systems, both qualitatively and quantitatively.

The composition of the board is:board

Martina Chirilus-Bruckner (UL) Roeland Merks (CWI)
Jason Frank (UU) Bob Rink (VUA)
Stephan van Gils, chair, (UT) Kees Vuik (TUD)
Michiel Hochstenbach (TUE) Holger Waalkens (RUG)

Within the board there are portfolio managers for: teaching, outreach, acquisition, NDNS+
meeting, and PhD-days.

2 Cluster Research

In this section we describe the current research themes of the cluster. We focus on highlights,
and add references to a small selection of other contributions.

2.1 Bifurcation and Chaos

Bifurcation theory and chaos theory have been at the heart of the field of dynamical systems
over the last half century. The importance of this subject lies in that it predicts and describes
robust dynamical phenomena in a huge number of application areas simultaneously, varying
from mechanics, physics and chemistry, to economics and the earth and life sciences.
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Bifurcation theory, in particular, aims to classify the scenarios by which phase transitions can
take place, and to describe the early warning signals that accompany these transitions. It turns
out that many of these scenarios are universal, and that they often entail the onset of complex,
e.g. chaotic, behavior.

Top publications:1 [(i),(ii), (iii), (iv) ]

Selected other publications: [2, 8, 16, 20, 38, 39, 62]

Highlight: Bifurcations in network dynamical systems

Many systems in science and technology can be viewed as networks: they consist of similar
individual nodes with connections between them. Examples include power grids, neuron net-
works and genetic regulatory networks. It turns out that dynamical systems that exhibit the
structure of a network, behave vastly different from general dynamical systems. They may
for example synchronize, so that several nodes of the network act in unison (the simultaneous
firing of neurons, consensus formation in a decision process.)

A comprehensive mathematical framework for network synchronization was developed by Lee
DeVille, Micheal Field, Martin Golubitsky, Eugene Lerman, Ian Stewart et al. throughout the
last two decades. The mechanism for this phenomenon was not understood until recently,
when Eddie Nijholt, Bob Rink and Jan Sanders (VU Amsterdam) revealed that synchrony
breaking bifurcations are governed by so-called hidden symmetry [38, 39, 40, 43, 44, 45]. Unlike
graph structure, hidden symmetry is compatible with modern dimension reduction techniques
(e.g., center manifold reduction), and it also allows for the application of tools from algebra,
representation theory and transversality theory.
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Figure 1: Three steady state branches cross in a synchrony breaking bifurcation for this network. This
scenario is impossible in the absence of network structure.

2.2 Multiple Scales

The term Multiscale Modeling is used to represent two closely related challenges in the field
of nonlinear dynamics of natural systems. Firstly, it refers to an approach where the same
physical system is represented at small scale where detail is needed, and at a more coarse-
grained system otherwise. Secondly, it can refer to the study of inherently multiscale systems,
most particularly biological systems, where aggregate properties can feed back on the dynamics
of the small scale.

Top publications: [(v),(vi) ]

Selected other publications: [53, 31, 54, 9, 65, 42, 15, 14]
1Note that there are ’top publications’ and ’standard references’.
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Highlight: The cross-scale effects of neural interactions during human neocortical seizure ac-
tivity [17].

Despite enormous efforts to understand the functioning of the brain under normal and patho-
logical conditions, many questions are wide open. Collaboration between the lab of Wim van
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Figure 2: Schematic of the multi-scale model. The model consists of a mesoscopic neural field model
for the propagating wavefront that is connected to a neural mass model representing the surrounding
macroscopic network. The activation of the inhibitory populations’ response, feedforward inhibition, is
governed by γ ∈ [0, 1].

Drongelen in Chicago and the Applied Analysis group in Twente, supported by NWO through
a visitor grant, has led to a fundamental insight in the role of inhibition in the brain. Brain
activity at the millimeter scale registered by a so called Utah array was modeled by a neural
field, which proved to be a very successful tool since their introduction in the seventies by Hugh
Wilson and Jack Cowan. The interaction between the neural field and the neural mass allowed
to hypothesize the role of feedforward inhibition in cortex.

2.3 Scientific Computing

Scientific Computing is a fast-growing, highly interdisciplinary field that brings together meth-
ods from numerical analysis, high-performance computing and various application fields. It is
the area of research that provides better simulation tools aimed at many different applications.

Top publications: [(vii), (viii), (ix), (x),(xi), (xii)]

Selected other publications: [7, 46, 68, 37, 60, 23]

Highlight: High Performance Image Processing.

Within Scientific Computing one of the highlights is the results on image processing, with
applications in face recognition, medical imaging, sonar images, seismic images etc. Typical
problems are how to improve the accuracy, how to enhance the signal to noise ratio and the
development of fast and robust solvers. The standard mathematical tools to solve this type of
inverse problems are Bayesian and (regularized) least squares methods. In recent years various
breakthroughs have been obtained in the domain of inverse problems. The idea behind this
problem is to compare simulations with measurements.

Many imaging problems can be described with the wave equation (ultrasound, MRI, acoustic
waves). A popular approach is to consider solutions of the wave equation in the frequency
domain. In order to see more details it is important to increase the frequency as much as
possible. However for large frequencies, the computing time to find the solution explodes.
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In 2006 the Complex Shifted Laplace preconditioner was introduced, which makes it possible
to find the solution with only a linear increase in time [19, 61]. Currently, this is the world
standard to solve Helmholtz problems. To obtain realistic images the behavior of the solver
should be independent of the frequency. To achieve this the group of Kees Vuik collaborates
with the group of Reinhard Nabben from the TU Berlin to combine the complex shifted Laplace
preconditioner with a second level (deflation) preconditioner [18, 52, 51]. For small to medium
size range of frequencies this leads to a solver where the number of iterations is independent
of the size of the frequency.

2.4 Variational Methods

In a great many mathematical problems arising from natural systems, the solution can be
characterized either as a stationary point of some functional, or as a curve of steepest descent
(a gradient flow). The Calculus of Variations, in which functional analysis, geometry, topology
and PDE theory interact closely, is the mathematical toolbox par excellence for this type of
problems, and this field plays a central role in the work of several groups in NDNS+.

Top publications: [(xiii),(xiv), (xv), (xvi),(xvii)]

Selected other publications: [55, 25, 6, 57, 58, 56, 66, 48, 47]

Highlight: High-level connection between gradient flows and large-deviation principles.

It was realized in 1998 by Felix Otto and co-workers [29] that many well-known partial dif-
ferential equations are gradient flows. With their introduction of the Wasserstein metric and
the accompanying Wasserstein gradient flows, a large number of existing systems were brought
together under the gradient-flow umbrella—such as convection-diffusion equations, multiphase-
flow equations, the porous media equation, moving-boundary problems, and many others.

However, despite great mathematical interest [5], a physical or mathematical–modelling un-
derstanding of this new structure was still missing.

In a series of papers starting in 2010, Mark Peletier and co-workers built a theory which explains
the origin of many gradient-flow structures of well-known PDEs, including the Wasserstein
flows and many others. They arise in an intrinsic manner from the large deviations of some
underlying, more microscopic stochastic processes.

The most recent work shows that this insight is not at all restricted to Wasserstein gradient
flows: in fact, every sequence of reversible stochastic processes satisfying a large-deviation
principle provides its deterministic limit with a gradient-flow structure [33]. This insight also
gives rise to a natural generalization of Onsager’s famous Reciprocity Relations [41, 34].

2.5 Patterns and Waves

The study of patterns and waves has traditionally been a central theme in the Dutch applied
mathematics community and lies at the core of the NDNS+ cluster. Spanning myriads of
applications, it has continuously been a stimulating and inspiring force for new mathematical
challenges and the endeavor to strive for a unifying theory for the most commonly used model
equations across disciplines: nonlinear partial differential equations (PDEs). Among the most
recent goals within this field are 1) the incorporation of varying coefficients, that is, of non-
autonomous/inhomogeneous PDEs both in time and/or in space (rather than the mere tuning
of constant parameters) and 2) the analysis of pattern formation in two spatial dimensions.
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Top publications: [(xviii),(xix)]

Selected other publications: [27, 10, 50, 31]

Highlight: A model for desertification.

A very fruitful application is the modeling of desertification in ecology, where nonlinear systems
of reaction diffusion equations are used to model the degradation of a vegetated area to a
desert, the ultimate goal being the elucidation of an effective mechanism to influence or even
reverse this process. The systems of nonlinear PDEs arising in this application pose several
different mathematical difficulties, such that, to develop analytical tools, it is often more con-
venient to divert to somewhat simplified versions that still capture the main phenomena. The
Klausmeier model and various extensions and generalizations thereof is one such phenomeno-
logically derived model that features a wide range of stable patterns and transient dynamics
resembling those observed in nature, while still allowing rigorous mathematical analysis. In a
series of articles [13, 59, 49, 12] Arjen Doelman et al. investigated the formation of patterns in
one and two spatial dimensions revealing the effect of a sloped terrain in form of an additional
advection term.

2.6 Stochastic Dynamics

The theme Stochastic Dynamics was introduced to reflect the growing importance of stochastic
perturbations in deterministic systems, and more generally the increasing interaction between
analysis and stochastics.

The inclusion of stochastic effects in models has become a standard modeling assumption, also
where more traditionally mostly deterministic models were considered. Stochastic dynamics
also refers to the use of stochastic methods in the study of dynamics, a use that has increased
steeply.

Top publications: [(xx)]

Selected other publications: [3, 4, 26, 11, 21, 36, 21, 36, 35, 32, 24, 1, 28]

Highlight: Analysis of stochastic PDEs.

During the past 4 years Jan van Neerven and Mark Veraar (Delft) have worked out several
ramifications of their fundamental stochastic maximal regularity result. As in the case in the
deterministic setting, maximal regularity enables one to successfully solve various classes of non-
linear and/or time dependent stochastic PDEs using fixed point techniques. Along this line
of thought, a detailed regularity theory has been established for non-autonomous (stochastic)
PDEs with measurable dependence in time. An important development has been to introduce
weighted techniques from harmonic analysis. The use of weighted estimates in space and time
has enabled them to considerably improve and extend existing results. Among other things,
they have shown that the Laplace operator with Dirichlet boundary conditions on a smooth
domain has a bounded H∞-functional calculus on weighted Lp-spaces for very general power
weights [64, 22].

2.7 Cluster funding

The primary cluster expenditures are the funding of PhD, Postdoc and Tenure Track positions.
These have been listed in the table below.
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Table: Funding of NDNS+ by NWO

Names of researchers and universi-
ties

Type of re-
search posi-
tions

Funded by NWO
(in e)

Additional
funding

Research focus

Zagaris UT PhD 100ke 100ke Multiple Scales
Van Gils UT PhD 100ke 100ke Bifurcations and Chaos
Brune UT TT 240ke 160ke Variational Methods
Hulshof VU / Prokert TU/e PhD 100ke 100ke Multiple Scales
Planqué VU PhD 100ke 100ke Patterns and Waves
Van Leeuwen UU TT 240ke 160ke Scientific Computing
Homburg/Peters UvA PhD 90ke 100ke Bifurcations and Chaos
Batenburg CWI (also DIAMANT) TT+PhD 345ke 265ke Scientific Computing
Efstathiou RUG TT 240ke 160ke Bifurcations and Chaos
Peletier TU/e TT+PhD 345ke 265ke Variational Methods
Van den Berg VU TT+PhD 345ke 265ke Bifurcations and Chaos
Chirilus-Bruckner UL TT 240ke 160ke Patterns and Waves
Rademacher CWI PhD 100ke 100ke Patterns and Waves
Schuttelaars TUD PhD 100ke 100ke Multiple Scales
Pop TU/e Postdoc 100ke Scientific Computing
Total 2785ke 2135 ke

Table: Obtained funding under NWO grant schemes

Name of grant scheme # awards Amount of NWO funding
(in e)

Additional funding, if applicable
(in e)

NWO ALW 3 627.495
NWO Complexity 1 500.000
NWO Earth and Life Sciences 2 462.872
NWO ENBARK 1 280.000
NWO eScience 3 938.000
NWO ESI-pose 2 1.500.000
NWO EW 3 663.000
NWO Free competition 9 1.854.568
NWO HTSM 1 500.000
NWO JSTP China 1 300.000
NWO Mathematics of Planet Earth 7 1.500.000
NWO NICAS 1 360.000
NWO NWA Startimpuls 1 2.500.000
NWO Open Technologie 1 320.000
NWO Physical Sciences 3 674.135
NWO Social Sciences 1 200.000
NWO TOP1 3 1.514.402
NWO TOP2 3 682.000
NWO TTW 1 250.000
NWO URSES 1 650.000
NWO Visitors Travel Grant 3 23.300
NWO DST 1 450.000
NWO CSER 11 2.758.708
NWO VENI 3 3.250.000
NWO VIDI 7 4.980.563
NWO VICI 4 6.000.000
STW 25 9.820.203
total 43.187.146

Table: Obtained funding under international grant schemes

Name of grant scheme # awards Amount of fund-
ing (in e)

Additional funding

COST Action MP1207 EXTREMA 1 550.000
CSC-UU (1 PhD student for four years) 3 n.a.
ERCIM 1 150.000
EU 7 3.500.000
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European Science Foundation Quan Tissue 7.500
H2020 3 4.857.000
INRIA 1 9.000
Marie Curie European Reintegration Grant 3 395.000
National Science Foundation Denmark 1 130.000
NCF Research Grant 2 26.000
NSF Grow 1 9.000
Schlumberger foundation 2 96.000
Turkish Government Grant 1 n.a.
WAKEUPCALL 1 500.000
total 10.229.500

2.8 20 top-publications

(i) J.B. van den Berg and J. Jaquette (2018). A proof of Wright’s conjecture. Journal ofBifurcation and
Chaos Differential Equations, 264(12), 7412-7462.

Wright’s equation is a classical delay-differential equation with negative feedback. Many
have worked towards a proof that for any parameter value above a threshold there is a
single slowly oscillating solution that attracts almost all dynamics. This work gives the
final missing piece to this long-standing puzzle.

(ii) B. Rink and J. Sanders (2015). Coupled cell networks: semigroups, Lie algebras and
normal forms. Transactions of the American Mathematical Society, 367(5), 3509-3548.

Dynamical systems like metabolic networks or power grids consist of networks of sub-
systems that interact and synchronize. This paper connects network dynamics to the
representation theory of algebraic semigroups, leading to new tools for computing syn-
chrony patterns and synchrony-breaking bifurcations in networks.

(iii) A. Homburg (2017). Atomic disintegrations for partially hyperbolic diffeomorphisms.
Proceedings of the American Mathematical Society, 145(7), 2981-2996.

Shub and Wilkinson showed that volume can be stably ergodic for conservative diffeomor-
phisms on manifolds. The manifold is invariantly foliated by circles (right). It is shown
that volume becomes disintegrated into point measures. Thus ’Fubini’s nightmare’ nat-
urally occurs in dynamical systems.

(iv) M. Astorg, X. Buff, R. Dujardin, H. Peters, and J. Raissy (2016). A two-dimensional
polynomial mapping with a wandering Fatou component. Annals of Math., 263-313.

The non-existence of wandering domains in one complex dimension was conjectured by
Fatou (1910’s) and proved by Sullivan (1985). This work shows that this celebrated
theorem fails in two complex dimensions. The proof relies upon a study of parabolic
bifurcations for time-dependent dynamical systems.

(v) A. Dubinova, C. Rutjes, U. Ebert, S. Buitink, O. Scholten, and G.T.N. Trinh (2015).Multiple Scales

Prediction of lightning inception by large ice particles and extensive air showers. Physical
Review Letters, 115(1), 015002.

This paper shows a novel explanation of the initiation of lightning due to high-energy
cosmic particles, based on discharge simulations combined with rare event analyses of
the coincidence of sufficiently high electric fields, sufficiently large ice particles, and a
sufficiently strong extensive air shower.

(vi) J.H. van Heerden, M.T. Wortel, F.J. Bruggeman, J.J. Heijnen, Y.J.M. Bollen, R. Plan-
qué, J. Hulshof, T.G. O’Toole, S.A. Wahl, and B. Teusink (2014). Lost in transition:
start-up of glycolysis yields subpopulations of nongrowing cells. Science, 343(6174),
1245114.

7

https://doi.org/10.1016/j.jde.2018.02.018
https://doi.org/10.1090/S0002-9947-2014-06221-1
https://doi.org/10.1090/proc/13509
https://doi.org/10.4007/annals.2016.184.1.2
https://doi.org/10.1103/PhysRevLett.115.015002
https://doi.org/10.1126/science.1245114
https://doi.org/10.1126/science.1245114


The yeast S. cerevisiae does not handle transitions from low to high glucose conditions
well. This study demonstrates with experiments and mathematical models that yeast gly-
colysis exhibits bistabilty. It elucidates how a side-branch, trehalose metabolism, ensures
that yeast stays in the normal steady state instead of the deadly, imbalanced alternative.

(vii) S. Van Aert, K.J. Batenburg, M.D. Rossell, R. Erni, and G. van Tendeloo (2011).Scientific
Computing Three-dimensional atomic imaging of crystalline nanoparticles. Nature, 470(7334), 374.

This article demonstrates for the first time that a complex-shaped crystalline nanoparticle
can be reconstructed in 3D at atomic resolution from two to four 2D electron microscopy
images with a new tomography algorithm that combines combinatorial and numerical
mathematical methods.

(viii) B. Sanderse, S.P. van der Pijl, and B. Koren (2011). Review of computational fluid
dynamics for wind turbine wake aerodynamics. Wind energy, 14(7), 799-819.

Wind turbine wake aerodynamics is of crucial importance for the design of wind farms.
This article reviews computational fluid dynamics techniques for simulating wind turbine
wakes, including modeling of the rotor, complex terrain effects, turbulence models, and
coupling with atmospheric simulations.

(ix) S. Dubinkina and J. Frank (2010). Statistical relevance of vorticity conservation in the
Hamiltonian particle-mesh method. Journal of Computational Physics, 229(7), 2634-
2648.

Because of its inherent non-linearity, climate system simulations rely on numerical simula-
tions of the probability distributions, which violate the conservation laws of the continuous
system. This paper shows that the Hamiltonian particle-mesh method’s conservation of
potential vorticity along particle paths improves the probability distribution.

(x) T. van Leeuwen and F.J. Herrmann (2015). A penalty method for PDE-constrained
optimization in inverse problems. Inverse Problems, 32(1), 015007.

PDE-constrained optimization is at the heart of many applications in inverse problems,
optimal control and parameter estimation. Classical approaches result in a very non-linear
optimization problem. This paper analyzes a mildly non-linear alternative approach that
approximates the solution of the constrained problem.

(xi) P. van Slingerland, J.K. Ryan, and C. Vuik (2011). Position-dependent smoothness-
increasing accuracy-conserving (SIAC) filtering for improving discontinuous Galerkin so-
lutions. SIAM Journal on Scientific Computing, 33(2), 802-825.

In this paper an improved filter is given for enhancing discontinuous Galerkin solutions
that easily switches between one-sided postprocessing to handle boundaries or disconti-
nuities and symmetric postprocessing for smooth regions. For the modified postprocessor
the error becomes independent of the boundary conditions.

(xii) S. Rhebergen, B. Cockburn, and J.J. van der Vegt (2013). A space–time discontinuous
Galerkin method for the incompressible Navier—Stokes equations. Journal of Computa-
tional Physics, 233, 339-358.

A novel space-time hybridizable discontinuous Galerkin (HDG) finite element discretiza-
tion of the incompressible Navier–Stokes equations is presented. The numerical dis-
cretization preserves higher-order accuracy on time-dependent unstructured meshes and
is particularly well suited for free-surface and fluid-structure interaction problems.

(xiii) A.J. van der Schaft, and B.M. Maschke (2013). Port-Hamiltonian systems on graphs.Variational
Methods SIAM Journal on Control and Optimization, 51(2), 906-937.

This paper geometrically models the dynamics of a wide class of physical and biological
networks as Hamiltonian systems with energy dissipation. The result implies that the
machinery from geometric mechanics is applicable to the analysis and control of these
networks, including set-point stabilization and disturbance rejection.
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(xiv) K. Efstathiou, and H.W. Broer (2013). Uncovering fractional monodromy. Communi-
cations in Mathematical Physics, 324(2), 549-588.

Fractional monodromy is a topological property of singular fibrations with implications
for quantum spectra. Appropriate tools for its study have long been elusive. This paper
studies fractional monodromy in a general setting, through covering maps and ideas from
algebraic topology. This has set the foundations for further results on this problem.

(xv) M. Benning, C. Brune, M. Burger, and J. Müller (2013). Higher-order TV meth-
ods—enhancement via Bregman iteration. Journal of Scientific Computing, 54(2-3),
269-310.

This article generalises the BV function and multi-scale theory for the famous variational
Rudin-Osher-Fatemi model. For the first time nullspace properties and functional es-
timates of TGV were proven and Bregman methods paved the way for reconstructing
nonlinear higher-order eigenfunctions.

(xvi) S. Adams, N. Dirr, M.A. Peletier, and J. Zimmer. From a large-deviations principle to
the Wasserstein gradient flow: A new micro-macro passage. Communications in Math-
ematical Physics, 307:791–815, 2011.

This paper connects the world of deterministic gradient-flow equations with that of
stochastic processes, showing that gradient-flow structures are a natural consequence
of large-deviation principles for such processes. This explains the observation that many
well-studied partial differential equations are gradient flows.

(xvii) J.H. Evers, S.C. Hille, and A. Muntean (2015). Mild solutions to a measure-valued
mass evolution problem with flux boundary conditions. Journal of Differential Equations,
259(3), 1068-1097.

The work formulates a mild solution concept for measure-valued solutions to a class of
transport equations in a suitable space of measures. The well-posedness of the problem
is shown, even in the presence of discontinuous reaction terms. An approximation to this
singular case by regular continuous terms is provided.

(xviii) A. Doelman, G. Hayrapetyan, K. Promislow, and B. Wetton (2014). Meander andPatterns and
Waves Pearling of Single-Curvature Bilayer Interfaces in the Functionalized Cahn–Hilliard Equa-

tion. SIAM Journal on Mathematical Analysis, 46(6), 3640-3677.

The functionalized Cahn–Hilliard free energy models the appearance and evolution of
asymptotically thin morphologies such as membranes in cell biology and synthetic chem-
istry. This paper addresses the existence and stability of single curvature bilayers and
characterize the occurrence and nature of meander and pearling instabilities.

(xix) M. Chirilus-Bruckner, W.P. Düll, and G. Schneider (2014). Validity of the KdV equation
for the modulation of periodic traveling waves in the NLS equation. Journal of Mathe-
matical Analysis and Applications, 414(1), 166-175.

This work gives a new analytical approach along periodic traveling waves in the Nonlinear
Schrödinger (NLS) equation. A novel choice of coordinates, function spaces and estima-
tion techniques reduces the method’s technicality. Modulations of amplitude and phase
in the NLS can be described by the Korteweg–de Vries equation on long time scales.

(xx) J.M.A.M. van Neerven, M.C. Veraar, and L. Weis (2012). Stochastic maximal Lp-Stochastic
Dynamics regularity. Ann. Probab. 40 (2012), 788-812.

In this paper maximal regularity for stochastic partial differential equations is proved,
which solves a long standing open problem. Consequently, many difficult semi-linear,
quasilinear and non-autonomous stochastic partial differential equations can be solved by
a fixed point argument.

9

https:doi.org/10.1007/s00220-013-1816-9
https://doi.org/10.1007/s10915-012-9650-3
https://doi.org/10.1007/s00220-011-1328-4
https://doi.org/10.1016/j.jde.2015.02.037
https://doi.org/10.1137/13092705X
https://doi.org/10.1016/j.jmaa.2013.12.061
DOI: 10.1214/10-AOP626


3 Participation Dutch Mathematics Community

The NDNS+ cluster brings together all mathematicians in the Netherlands who study the
dynamical behavior of natural systems from a modeling, numerical or analytical point of view.
At present this involves researchers from the three technical universities (TUD, TU/e, UT), five
general universities (UU, UvA, RUL, RUG, VUA), and the national research center CWI. The
activities of the cluster contribute to community building, stimulate the exchange of research
expertise (both national and international), disseminate the research done within NDNS+, the
creation of a stimulating environment for PhD students and innovation of research.

Through so called ‘advisor positions’, collaboration between the NDNS+-institutes has been
stimulated. Through small grants (10ke), it has been made possible to reduce teaching load,
facilitating to spend time at another institute. In 2011, 7 advisor positions have been financed.

There is ongoing collaboration with the GQT cluster. Since 2014, a biennial international
mini-workshop on Symplectic Geometry is jointly organized. The GQT cluster supported the
appointment of a NDNS+-tenure track position in topological data analysis.

Computational imaging forms a bridge between our cluster and DIAMANT, resulting in collabo-
ration between UU (Tristan van Leeuwen), UT (Christoph Brune) and CWI (Joost Batenburg).
The work of Mark Peletier on generalized gradient flows and large deviations is on the inter-
face with STAR. We foresee that interactions with STAR will occur more frequently, especially
within the themes ’dynamics and data’ and ’dynamical systems theory’.

4 Activities, participation target groups and expenditures (facts
and figures)

The aim of the NDNS+ cluster is to create a community of PhD students, postdocs and
staff from the cluster to share ideas and to promote research. To achieve this goal, we use
several instruments: the support for workshops helps NDNS+ researchers to organize meetings;
the PhD Days create a community of PhD students where also interesting lectures by staff
members are given; advisor positions stimulate collaborations across different institutions; travel
grants allow PhD students to make long-term visits to foreign institutions, thereby expanding
their network and broadening their viewpoint. The NDNS+ meetings (two days) are meant
for community building and exchange of ideas. In 2019 we will combine this activity with the
yearly meeting of the Dutch Mathematical Society (NMC). As all the clusters will do so, this
will be a stimulus for the NMC.

Table: Activities and budget

Activity Budget Aim Target group Number Decision
making
procedure

Support for workshops
and conferences

143ke Stimulating vibrant research
climate; strengthening (in-
ter)national ties

All researchers
in NDNS+ field

70 workshops &
Conferences

NDNS+
board

NDNS+ PhD travel
grants

71ke Creating opportunities for
talented students

PhD students 20 international
research visits
of 1–3 months

NDNS+
director

Advisor positions (staff
exchange)

70ke Enhancing collaboration be-
tween the NDNS+ research
groups

faculty of
NDNS+ re-
search groups

7 exchanges NDNS+
board

NDNS+ two-day meet-
ings

38ke Enhancing collaboration be-
tween the NDNS+ research
groups; community building

National
NDNS+ re-
search commu-
nity

4; 30–50 par-
ticipants
(2015–2018)

NDNS+
board
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NDNS+ PhD Days 34ke Community building for PhD
students and broadening
their perspective

PhD students 7; 30–40 par-
ticipants
(2012–2018)

NDNS+
board

summer schools 10ke Offering opportunities for
PhD students to broaden
and deepen their knowledge

PhD students 3 NDNS+
board

International visitors (1–3
months)

19ke Stimulating international
collaboration, stimulating
research climate

Senior
researchers

5 NDNS+
board

local activities 32ke Stimulating activity in the
NDNS+ research field

All researchers
in NDNS+ field

Many small
ones

Local
NDNS+
team
leader

PWN-Deloitte report
(contribution)

10ke Exhibiting the importance of
mathematics for the Dutch
economy

Decision mak-
ers

1 NDNS+
board

MasterMath 10ke Offering an excellent na-
tional Master programme in
dynamical systems and anal-
ysis

Master/PhD
students

5–8 courses per
year

NDNS+
board

Total 437ke

5 Relevance of the cluster including knowledge transfer

Through the cluster, in total 9 new tenure track positions have been realized. In the 2013
round Christoph Brune (UT), Tristan van Leeuwen (UU), Konstantinos Efstathiou (RUG) and
Martina Chirilus-Bruckner (RUL) were appointed. Two more candidates in this round got a
tenure track position, although not financed by the cluster: Svetlana Dubinkina (CWI) and
Oliver Fabert (VUA). In 2017, three more tenure track positions were obtained: Magnus
Botnan (VUA), Pierre Nyquist (TU/e) and Felix Lucka (CWI). The tenure trackers from the
2013 round have a significant impact in the mathematical community in the Netherlands.

Within the national mathematics teaching program Mastermath Christoph Brune and Tristan
van Leeuwen jointly developed the course ’Inverse problems in Imaging’, Konstantinos Efs-
tathiou is responsible for ’Advanced Hamiltonian Mechanics’ (which is a joint GQT, NDNS+
course) and Martina Chirilus-Bruckner is one of the teachers of the course ’Nonlinear Waves’.

During the period under consideration, 158 PhD students were active. In the following table
we list the outflow according to activities after finishing.

Consultancy Industry Postdoc Education Publisher Unknown Not yet finished
6 25 25 20 1 30 51

5.1 Collaboration with other disciplines

It is in the DNA of the NDNS+ cluster to build strong relationships with other disciplines, like
biology, chemistry, ecology, economy, and physics. Here we give examples of collaboration with
physics and the life sciences.

A nice example of the close interaction between mathematics and physics in NDNS+ is the col-physics

laboration between the Mathematics of Computational Science group (Department of Applied
Mathematics) and the Complex Photonic Systems group (Department of Applied Physics) of
the University of Twente. Both groups study ways to manipulate light at the nanoscale us-
ing photonic crystals and collaborate in four NWO funded PhD projects. This nanophotonics
research requires both the development, analysis and implementation of novel discontinuous
Galerkin eigenvalue solvers for the time-harmonic Maxwell equations and their implementa-
tion in software running efficiently on parallel clusters. A highlight in this research is the recent
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JCER project “Accurate and Efficient Computation of the Optical Properties of Nanostructures
for Improved Photovoltaics”, in which novel Discontinuous Galerkin Virtual Element Methods
(DGVEM) are developed for the computation of light in real fabricated 3D photonic crys-
tals whose geometry is measured by the COPS group in the European Synchrotron Radiation
Facility using X-ray holotomography techniques. Until now only computations on idealized
structures were possible in nanophotonics. The very large data sets resulting from the X-ray
experiments contain, however, rough surfaces that require a whole new approach to discretize
the Maxwell equations using DGVEM on polyhedral non-convex elements. Standard finite ele-
ments methods would simply not be efficient for these problems due to the very large geometric
complexity.

In Groningen, Holger Waalkens is studying classical and quantum transport in Hamiltonian
systems. Of special interest is the flux through bottlenecks linking different phase space regions
that represent metastable states. This setting is very general with applications reaching from
the conformational changes of a molecule to the capture of asteroids in the solar system. It
can be shown that the transport is mediated by normally hyperbolic invariant manifold and their
stable and unstable manifolds which on a microscopic scale also form the skeleton for quantum
transport. In collaboration with physicists and chemists he is working on the computation of
the invariant manifolds in multi-degree-of-freedom Hamiltonian systems and their utilization
for determining classical and quantum transport rates.

Life Sciences are becoming an ever more important application area for NDNS+ and are alife sciences

rich inspiration for dynamical systems theory, scientific computing, and multiscale systems.
Organizationally, NDNS+ members are active in the national Life Sciences community. For
instance, Roeland Merks is member of the steering committee of the Origins Center, a national
initiative funded by the Dutch National Science Agenda.

Recent contributions of NDNS+-scientists have led to new insights in life sciences as well as
new life-science-inspired mathematics, often in collaboration with experimental biologists. At
the ecological scale, in close collaboration with ecologists, Arjen Doelman and coworkers have
analyzed sets of advection-reaction-diffusion equations to explain pattern formation in water-
limited (arid) ecosystems [53], and they have uncovered dynamics according to the Cahn-
Hilliard equations in mussel beds [31]. At the cellular and tissue scale, Fred Vermolen and Kees
Vuik develop partial-differential equation and Lagrangian cell-based models of wound healing
in collaboration with bio-engineers, with the ultimate aim to identify new strategies to prevent
scar formation [30] and assist treatment planning [67]. Roeland Merks et al. develop hybrid,
multi-scale cellular Potts and partial-differential equation-based simulation models to uncover
how the chemical and mechanical interaction between cells and their micro-environment drive
blood vessel formation [65] and cell alignment in tissues [42]. Also, the work on neural networks
in the team of Stephan van Gils (see highlight multiple scales) is a good example of cell-to-
tissue scale modeling in collaboration with experimentalists. At the molecular level, using ODE
modeling the Bob Planqué and Joost Hulshof teams have predicted that glucose metabolism
in yeast has an alternative steady state, due to imbalance of phosphate. The prediction was
confirmed experimentally and has resulted in a publication in Science [63].

5.2 Collaboration with Dutch R&D institutions and/or industry

Collaboration with the Dutch R&D institutes and industry is mainly developed through STW
programs. Based on the programs that were funded in the period 2010-2018 we list the fol-
lowing companies and institutes, which were part of the users-committee for at least one of
the programs.
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Table: Companies involved in STW programs

Company/Institute Company
size <> 250

url

ABB Corporate Research Center, Switzerland > 250 https://new.abb.com/about
Additive Industries < 250 https://additiveindustries.com
Alliander > 250 https://www.alliander.com/en
Aluchemie > 250 https://www.aluchemie.nl/en/home.html
Almatis > 250 http://www.almatis.com
ASML > 250 https://www.asml.com/
Bekaert Combustion Technology B.V. (BCT) > 250 https://www.bekaert.com/en/
Bosch Thermotechniek B.V. > 250 https://www.bosch-industrial.nl
Controllab Products B.V. < 250 http://www.controllab.nl
Damen shipyards > 250 https://www.damen.com/en?
DEMCON > 250 https://www.demcon.nl/en/
DNV GL – Energy, KEMA Labs in Arnhem > 250 https://www.dnvgl.com/energy/
DNV-GL (Groningen) > 250 https://www.dnvgl.com
Dutch Institute for Fundamental Energy Research < 250 https://www.differ.nl
European Space Agency (ESA) > 250 https://www.esa.int/ESA
HZPC > 250 https://www.hzpc.com
Infinite Simulation Systems < 250 https://www.infinite.nl/bedrijf/contact/
Ipsum Energy < 250 https://www.ipsumenergy.com/en/
Micro Turbine Technology B.V. (MTT) < 250 https://www.mtt-eu.com
MI partners < 250 http://www.mi-partners.nl
Netherlands Institute for Space Research > 250 https://www.sron.nl
Plasma Pendix < 250
Royal Boskalis Westminster N.V. > 250 https://boskalis.com
Shell > 250 https://www.shell.com
Stichting FloodControl IJkdijk < 250 http://floodcontrolijkdijk.nl/en/
Sympower < 250 https://www.sympower.net/about/our-story
Tata steel > 250 http://www.tata.com
Tennet (Arnhem) > 250 http://karriere.tennet.eu
TNO > 250 https://www.tno.nl/en/
Van Oord > 250 https://www.vanoord.com
Westnetz GmbH > 250 https://iam.westnetz.de

5.3 Outreach activities

Table: Outreach activities

year activity

2011 Article in ‘de Volkskrant’ (national newspaper) about Ute Ebert’s research on sprites.
2011 Video ‘De wereld is wiskunde’ on Mark Peletier’s work as mathematician
2012 Video ‘Forging Steel with Mathematics’/‘Staal smeden met wiskunde’ on Lucia Scardia’s work

that combines maths with engineering to provide insight into old problems in plasticity
2012 Video ‘Adjusting the Rudder’/‘Het roer aanpassen’ on David Bourne’s contribution to the Study

Group Mathematics with Industry 2011
2012 Roeland Merks in the opinion magazine ’De Groene Amsterdammer’ on computer models in

biology.
2012 Public Radio interview with Jan Bouwe van den Berg about mathematical modeling
2012 Public Radio Interview with jan Bouwe van den Berg on complex patterns
2013 Arjen Doelman and coworkers in ‘de Volkskrant’ on the movement of mussels.
2013 Radio Broadcast on the prediction of traffic jams.
2014 Barry Koren in DWDD (a very popular talk show at prime time.)
2014 Jan Bouwe van den Berg in ’Wervelende wiskunde en superhelden’

youtube movie of this event
2015 Giovanni Bonaschi in Video on the paper ’Quadratic and Rate-Independent Limits for a Large-

Deviations Functional’
2015 Ute Eberts lab in the news with research on thunderstorms: New York Times, Frankfurter

Algemeine Zeitung, The Daily Mail
2015 Ute Ebert in TV broadcast about thunderstorms (’Biblic Plagues’)
2015 Kees Vuik in ’The Guardian’ on Prediction of earthquakes
2016 Eric Siero in a radio interview on desertification.
2017 4TU.AMI Spring Congress 2017: Mathematics for health
2017 National Mathematics Symposium for Dutch mathematics students
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2017 Danil Koppenol in Radio program on mathematics for wound healing
2017 Fred Vermolen and Danil Koppenol on mathematics for wound healing in National Education

Guide
2018 Christoph Brune in the news with 4TU Precision Medicine Program
2018 Sjoerd Rienstra receives the CEAS Aeroacoustics Award 2018
2018 Paolo Cifani receives the Wim Nieuwpoort Award for research into bubbly turbulence.

Part B: Roadmap

6 Organization and management of the cluster

The cluster brings together research groups from eight universities and CWI; the groups and
their members are listed in Appendix A. Each of these groups is associated with several of the
research themes outlined above, and there already exist many personal and scientific connec-
tions between the groups. The cluster is open for every person/group that wants to join. This
resulted recently in a ninth university, (Radboud University), that will join.

The cluster is managed by a board, which presently consists of the eight members listed in
section 1. The main task of the board is to coordinate the scientific activities of the cluster
regarding the organization of workshops, visiting positions, joint research, joint seminars. In
the coming years, special attention will be given to the initiation of large projects (for instance
at the European scale or the Dutch Scientific Agenda). There is secretarial support for NDNS+
at the University of Twente, where also the website is hosted and maintained. The board meets
twice a year and irregularly when important decisions are on the agenda.

6.1 New themes

Current research of NDNS+ focuses on Bifurcation and Chaos, Multiple Scales, Scientific
Computing, Variational Methods, Patterns and Waves, and Stochastic Dynamics. Shifts in the
national and international research landscape require that we critically reflect on these themes.
The overall focus of the NDNS+ cluster will remain in the area of Nonlinear Dynamics. After
careful evaluation, we have identified the following themes for the coming decade:

1. Dynamical Systems Theory

2. Computational Dynamics

3. Dynamics and Data

4. Emergence

6.1.1 Dynamical Systems Theory

Dynamical systems arise as mathematical models throughout the sciences. They describe the
evolution of quantities that change in the course of time. These models can be as simple as a
linear differential equation for the growth of a bacterial colony or an electronic circuit, and as
difficult as the stochastic partial differential equations arising from statistical mechanics and
quantum field theory. Differential equations of various degrees of complexity are nowadays
used, for example, to compute the spreading of diseases, to predict the weather and climate,
to determine the fate of species under evolutionary competition, to model economic markets,
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to calculate the orbit of a satellite under gravitational attraction, etc. Less standard dynamical
systems such as iterated function systems, data driven and equation free models, and hybrid
systems are meanwhile becoming more important in applications.

Dynamical systems are also a key tool for answering fundamental questions inside mathematics.
For example, they have played a pivotal role in number theory (Green and Tao used dynam-
ics to prove their famous result on arithmetic progressions), topology (a so-called geometric
flow was the crucial element of Perelman’s proof of the Poincaré conjecture), and complex
and symplectic geometry (Teichmuller flow; Floer theory). Moreover, ideas and language of
dynamical systems theory have drastically changed our view on partial differential equations
and mathematical physics in recent years. Illustrative in this respect is the fact that dynamical
systems play an essential role in the work of 13 of the 26 mathematicians who received a Fields
medal between 1994 and 2018.

Dynamical systems research in the Netherlands has been world-leading since the 1970s. It
originally focused on the foundations of the subject, in particular chaos theory, bifurcation
theory, and asymptotic analysis. Current research within NDNS+ on, for example, applications
of dynamical systems in mathematical biology and earth and climate science, grew directly out
of this tradition. Maintaining and strengthening the leading position of our country in this field
requires a continuous and significant investment in fundamental research of dynamical systems.
In the coming years, the NDNS+ research team will focus on

1. inventing topological and variational techniques for computing orbits of iterated maps
and differential equations, making use, for example, of set-valued maps and generalized
Morse and Floer homology;

2. better understanding the stochastic properties of deterministic systems, including random
maps, and their ergodicity, intermittency, and limit theorems;

3. describing the dynamics and bifurcation scenarios of systems with network structure, in
particular the question how and why networks synchronize. This also entails developing
tailored computational tools for network dynamical systems;

4. the rigorous justification of dimension reduction techniques, including homogenization,
and amplitude, modulation, and mean field equations;

5. designing computational techniques for the rigorous validation of solutions to high di-
mensional ODEs as well as PDEs.

6. developing analytic and computational tools for studying the dynamics of stochastic
and geometric PDEs, which describe complex dynamic phenomena in the earth and life
sciences.

6.1.2 Computational Dynamics

From the Dynamical Systems Theory theme it is manifest that there are many applications
of dynamical systems in physics, biology, finance, to name only a few. It is essential to have
theoretical results concerning the solution (existence, uniqueness, approximation), but it is not
always possible to answer these questions for more complex systems or to obtain sufficient
insight in the shape of the solutions by analytic means. The combination of theory and numer-
ical methods is of great importance for such problems. Indeed, dynamical systems can be very
difficult to solve with standard numerical methods for several reasons: bifurcations can occur,
the problem may have multiple time scales, ill-posedness in the neighborhood of singularities,
etc. In developing new numerical approaches to solve relevant dynamical systems these prop-
erties should be taken into account. Starting from “simple” problems for which an analytical
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expression for the solution is known, the numerical approximations can be compared with the
known solutions. This gives confidence that the methods can also be used for dynamical sys-
tems where the solution is not explicitly known, especially when complemented by convergence
results for the numerical scheme.

Many dynamical systems that are pivotal in applications have special properties, such as sym-
metries, conservation properties, positiveness, etc. It is very important to develop numerical
methods which lead to approximations that also have these properties (sometimes only in a
discrete sense). Numerical methods which preserve such properties are known as structure-
preserving methods. Furthermore, characteristic for many dynamical systems is the multi-scale
character, which means that large and small time scales (which can differ by many orders of
magnitude) are involved. Straightforward numerical methods can not be used to solve such sys-
tems due to excessive computing times. This motivates to look for special numerical methods
which can handle multi-scale problems or to reformulate the problem such that the multi-scale
character is taken into account, while the resulting system is solvable with standard numerical
methods. Moreover, bifurcations occur in many problems ranging from predator prey models to
the flow of the Gulf Stream (a warm and swift Atlantic ocean current). Good approximation of
the solution near bifurcations is indispensable since the consequences of missing a bifurcation
can be paramount. In general this problem is ill posed (unstable behavior) close to a bifurcation.
This makes the development of a robust numerical method very challenging.

There is a long tradition in the Netherlands of developing advanced numerical methods for
large dynamical systems. Research has been done to develop Computational Fluid Dynamics
methods which can be used for climate and weather prediction. Additionally, numerical meth-
ods are constructed to compute pattern formation in biological and geoscience applications.
Computational dynamics methods are also developed for multi-body systems and stochastic
applications.

In the coming years, the NDNS+ research team will focus on

1. Developing advanced structure-preserving numerical discretizations that can for exam-
ple be used to solve the three dimensional incompressible Navier–Stokes equations for
weather prediction and ocean flows.

2. Develop methods for multi-scale and stochastic problems, for example to deal with evolv-
ing patterns in biology and coastal regions (coupling water flow and sediment transport).
Multi-scale (time and space) behavior is crucial for these problems.

3. Proving that the developed algorithms are reliable, through numerical analysis, approx-
imation theory, convergence results and computer-assisted proof techniques. This may
not always be feasible in all generality, but can be accomplished for simplified configura-
tions.

4. Developing scalable methods for imaging. High resolution of the earth or medical images
are of primary importance. Current methods are not able to approximate these images
with the required accuracy within a reasonable amount of work.

5. Since many problems lead to large simulations, the methods should be formulated in such
a way that they are suitable for modern high performance computing hardware. Typical
hardware examples are: large parallel clusters, multi-GPU machines, and FPGA’s.
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6.1.3 Dynamical Systems & Data

The ability to discover physical laws and governing dynamical systems equations from data
is one of humankind’s greatest intellectual achievements. To study such temporal evolution
of natural processes, the traditional dynamical systems approach is to formulate a specific
mathematical model, often in the form of a (highly simplified) system of differential equations,
which is subsequently analyzed by theoretical and/or numerical means and compared to actual
observations. In practice however, this procedure is often frustrated by noisy measurements,
crucial variables that cannot be easily observed or parameters that cannot be estimated reliably.
The automatic discovery of hidden parameters or functions in dynamical systems from observed
data is an ill-posed inverse problem (data assimilation). Although, classical regularization theory
and methods exist, the automatic learning of very sensitive parameters, significantly influencing
the bifurcation analysis near chaotic regimes is still extremely challenging.

In recent years, there has been a first push towards developing data-driven methods to address
these challenges. Dynamical systems developed in theoretical neuroscience and deep recurrent
neural networks applied in data science share a lot of similarities. These methods often bypass
the need to have exact model equations, but still leverage our understanding of the main
qualitative features that dynamical systems can exhibit.

In the coming years, the NDNS+ research team will focus on the following five key topics to
address interface between dynamics and data via a unique combination of inverse problems,
dynamical systems and machine learning theory:

1. Inverse problems & data assimilation. Developing and analyzing variational methods
and nonlinear, nonlocal regularization techniques for inverse problems subject to integro-
differential equations, reflecting basic neural networks, is the first step. It connects to
data assimilation which has greatly been influenced by dynamical systems.

2. Koopman operators for spectral analysis. The main idea behind Koopman theory is that
the action of dynamical systems can be lifted from the space of physical variables to the
set of possible measurements on the physical system. The Koopman operators describe
the way in which these measurements evolve under the action of the dynamical sys-
tem. A systematic comparison to spectral methods of nonlinear gradient flows regarding
homogenous functionals, e.g. of low-rank type, could offer great new insights.

3. Persistent homology & optimal transport on graphs. When viewed as a collection of
points in some possibly high-dimensional space, the shape and clusters of a dataset
often reflects important patterns within the data. Higher-dimensional holes or voids may
correspond to impossible or unstable configurations (bifurcation analysis). Persistent
homology condenses the geometric information down into a useable format, while also
retaining and highlighting important nonlinear and global features of the dataset’s shape.
This promising area is related to Wasserstein transport and clustering methods on graphs.

4. Discovery of equations & model sparsity. It is a major challenge to turn raw data into
models that are not just predictive (data assimiliation), but also provide insight into the
nature of the underlying dynamical system that generated the data. Furthermore, brute
force data assimilation may lead to overfitting and high-dimensional models with little
predictive power. Dimensionality reduction via quantification of relative importance of
state variables and reduced basis methods will be of much interest.

5. Deep machine learning for PDEs. Deep recurrent artificial neural networks share a lot of
structural and numerical similarities with nonlinear dynamical systems and are able to rep-
resent complex nonlinear, multiscale maps in a compressible linearizable fashion. Whereas
nearly all past approximation algorithms for PDEs suffered from the well-known curse of
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dimensionality, deep learning networks are able to tackle this dimensionality reduction
efficiently via automatically learned emerging multiscale patterns (wavelet scattering and
hierarchical low-rank structures).

6.1.4 Emergence

The interaction of a large number of entities, each of which behaves according to rather simple
but nonlinear rules, often leads to rich, complex and unexpected collective behavior. The
building blocks appear to act in unison, displaying so-called emergent behavior. We see such
emergent dynamics in cars driving on a busy road, in neural networks in the brain, in atomic
lattices in a composite material, and in the molecules in the atmosphere and oceans forming
the weather system. Indeed, emergent phenomena manifest themselves on all possible scales,
from particle physics to the cosmos. At each new scale, the central question is: which pattern
emerges, and which rules govern its dynamics?

The mathematics of dynamical systems is pivotal in describing and predicting complex emergent
phenomena. One challenge is the continuum behavior of interacting particle systems, which
involves both PDE theory and large deviation principles. Another important area is the study
of pattern formation, which has an enormous diversity of applications: from desertification to
phase transitions, from structure selection in block copolymers to the dynamics of sandbanks in
the Waddenzee. Yet another manifestation is collective behavior on networks: synchronization,
rhythmic oscillation and structured chaos in networks ranging from metabolic pathways to power
grids. More generally, central to the theory of dynamical systems are (symmetry breaking)
bifurcations, which are universal scenarios that play a fundamental organizing role in emergence.
These ‘normal forms’ are powerful tools for making qualitative and quantitative predictions
about complex emergent phenomena.

Emergent behavior often occurs in the form of some coherent structure: a shock wave in
the traffic jam, a traveling signal in the brain, plastic behavior in materials due to localized
defects, an eddy or cyclone in the atmosphere. The dynamics of the interacting building blocks
can often be studied through the analysis of singular limits, based on multiscale techniques.
This usually reveals an emergent low(er) dimensional invariant attractor, on which new laws of
motion (which may be local, nonlocal or a combination) can then be derived.

To make progress on such problems we need to develop novel mathematics as well as new
numerical algorithms. One cannot rely on scientific computing alone, since the size of the
system is often simply many orders of magnitude too big to keep track of in a computer
calculation. Effective computational methods for simulating large numbers of interacting units
could take advantage of the analysis of the limit where the number of interacting particles
tends to infinity. And in the opposite direction, discretizing the continuum limit leads to other
deep mathematical questions, such as: how fine-grained does the discretization need to be so
that it reliably conveys the behavior of the continuum model?

Some of the central challenges are:

1. How can we analyze systems where the emergent pattern feeds back to influence the
behavior of the individual units? In particular, when does this feedback (“downward cau-
sation”) lead to stabilization? Notorious examples are multicellular biological systems,
e.g., the heart. Here ion currents drive the propagation of excitation waves; these in-
duce tissue contraction, the resultant mechanical strains again open ion channels, locally
changing the ion currents.

2. How can we control emergent behavior on networks (synchronization, rhythmic oscilla-
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tion, structured chaos) ranging from metabolic pathways to power grids? Can one design
networks which exhibit certain desired collective behavior?

3. In multi-scale modeling: can we reliably include scales that are not explicitly modeled,
e.g. through stochastic components or through averaging/homogenization techniques,
and how to incorporate this efficiently in simulations?

4. When can we be sure that a (numerical) discretization is sufficiently fine-grained to
capture the true (emergent) behavior of the continuum system?

5. How can we understand which pattern emerges (is selected) in materials where there are
many stationary states, all far from homogeneous?

6. Can we understand the emergence of plastic behavior in materials (upscaling disloca-
tions)?

6.2 Development of research staff

Since the beginning of this century, the inflow of students in mathematics at Dutch universities
has increased from below two hundred, to over one thousand in 2015 and is still increasing. We
see a similar increase in other beta-sciences, leading to a strong increase in service teaching,
especially at the technical universities. This puts enormous pressure on the research time of
the staff. Although the hiring of tenure trackers has alleviated the pressure a little bit, we need
at least 10 fte in the next decade in this cluster to maintain our research capacity at the same
level. We hope that these positions can be realized through the sector plan for mathematics.

In coordination with other clusters, we came to the following proposal: our priority for 2019
is a national call of 4 Me, focusing on the 7 broad research themes envisioned in the sector
plan, to be spent on PhD positions, both matched and unmatched. It is our wish that the
clusters themselves will form the evaluation committee, ensuring an even division of positions
between the clusters, while for a specific theme all clusters linked to that theme will evaluate
in collaboration.

In the table below we list the a number of yearly expenses. Most items speak for themselves.
Note that we require funding to create research exchange positions to facilitate exchange
between the nodes within the cluster, but also across clusters. On the topic ’Dynamical
Systems & Data’ strong collaboration with STAR is necessary, and possible, to advance the
subject. The money involved is meant to reduce the teaching load for the one who travels.

Additional funding is necessary for the managing of the cluster. This report could not have
been made without the help of the secretaries at UT. Maintaining a website will increase the
coherence in the cluster, but clearly requires a time investment. We foresee more coordinating
tasks for the acquisition of larger grants within the Dutch Science Agenda or in Europe.

The largest amount is reserved for PhD positions, which are crucial to stimulate the research
as described in our roadmap. Through matching money, we will try to actually appoint more
than the four PhD positions mentioned in the table.

Table: Requested funding

budget item target group goal costs
(ke/yr)

Workshops/conferences NDNS+ researchser Research collaboration 20
PhD days NDNS+ PhD’s Community building 4
NDNS+ activities NMC NDNS+ researchers Community buidling 8
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Outreach activities Society Communication NDNS+ ac-
tivities

4

Focused activity groups NDNS+ researchers Stimulation focused activities
(call preparation)

20

PhD travel grants NDNS+ PhD’s International visits 30
International long-term visi-
tors

Foreign visitors in
NDNS+ area

Research collaboration 15

International visits NDNS+ researchers International collaboration 15
Research exchange NDNS+ members Stimulate joint research 20
Secretarial support Managing director Support of the board 10
4 PhD-positions NDNS+ researchers Research stimulus 800
total 946

7 SWOT Analysis

Table: SWOT Analysis

Strengths Weaknesses Opportunities Threats

Within the area of dy-
namical system we cover
the full range from fun-
damental to very applied
research

Not yet able to con-
tribute as a cluster to
large grant proposals

The cluster has the po-
tential to contribute to
societal problems, which
can also be a significant
source of mathematical
research questions and
funding

There are not enough
possibilities for funding
of the more fundamental
research

Research is of high qual-
ity according to research
grants, collaboration
with industry, visibility
in media, publications in
top journals

Relatively low inflow of
students in Mastermath
courses dedicated to
NDNS+ research topics

The diversity in special-
ization within the cluster
makes the cluster inter-
esting for large collabo-
rations

There is too much pres-
sure on research due to
an increasing teaching
load

Connection between re-
search and eduction is
optimal through Master-
math and teaching pro-
grams at our universities

Scientific Computing is
not yet fully integrated
in the cluster

Strengthening ties with
the STAR cluster will be
mutually beneficial, es-
pecially in the Dynamics
and Data theme

We are able to attract
excellent PhD students
and tenure trackers

7.1 Strategy for NDNS+ motivated by the SWOT

The main aim of the NDNS+ cluster remains to stimulate the high quality research performed
by the dynamical systems community in the Netherlands. The full breadth of the field, from
fundamental to applied, is supported by focussing on our four newly formulated themes. The
importance and visibility of scientific computing is highlighted by the computational dynamics
theme. There are tremendous opportunities in the theme of dynamics and data for fruitful
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collaboration with the STAR cluster. More generally, cooperation with the other clusters on
the sectorplan themes is envisaged.

The NDNS+ cluster will nourish its crucial role in community building, organising and supporting
international research activities in dynamical systems, as well as stimulating young researchers.

We intend to initiate the formation of consortia for larger grant proposals. The NWA calls
form excellent opportunities for funding of NDNS+ research. The cluster is well positioned to
make seminal contributions to the solution of societal problems, ranging from climate change
to personalised medicine to the energy transition. In this light it is particularly natural to join
forces with STAR (and possibly other clusters) to make such consortia even more attractive and
influential. Participation of the cluster in a European consortium should also be investigated.

The increasing number of bachelor students will likely lead to a natural increase of students in
NDNS+ courses. But we will also take an active approach towards making our MasterMath
offering more attractive, by developing courses on contemporary topics linked to current re-
search, as well as offering courses in collaboration with other clusters which appeal to a broader
group of master students.

The threat of the lack of funding for fundamental research is ever-present, but we are optimistic
that the sectorplan will alleviate the most pressing issues. This will lead to a better balance
between research and teaching. It will also allow NDNS+ members to invest time in various
fora to show that interdisciplinary research is key for mathematics to remain a healthy, valuable
and fascinating discipline.
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Present Participants of NDNS+

Name of scientist Expertise HGL, UHD
and UD

University

Christoph Brune Variational Analysis, Medical Imaging UD UT
Bernard Geurts Large Scale Computing HGL UT
Stephan van Gils Delay equations, Neuroscience HGL UT/UU
Hil Meijer Bifurcation theory, Neuroscience UD UT
Jaap van der Vegt Numerical analysis HGL UT
Hans Zwart Control of physical systems HGL UT
Bob Rink Bifurcation theory, Network Dynamics HGL VU
Jan Bouwe van den Berg Computer-assisted Theorems in Dynamics

and PDEs
HGL VU

Magnus Botnan Topological Data Analysis TT UD VU
Bob Planqué Mathematical Biology UD VU
Federica Pasquotto Symplectic Topology UD VU
Oliver Fabert Symplectic Geometry UD VU
Joost Hulshof Applied Analysis HGL VU
Rob van der Vorst Topological Dynamical Systems HGL VU
Ale Jan Homburg Dynamical Systems HGL VU
Jan-Cees van der Meer Multiscale & Transient Dynamics UD TU/e
Mark Peletier Multiscale & Transient Dynamics HGL TU/e
Jim Portegies Multiscale & Transient Dynamics UD TU/e
Georg Prokert Multiscale & Transient Dynamics UD TU/e
Oliver Tse Multiscale & Transient Dynamics UD TU/e
Martijn Anthonissen Scientific Computing, PDEs UD TU/e
Björn Baumeier Scientific Computing, Molecular Dynamics,

Quantum Chemistry
UD TU/e

Michiel Hochstenbach Scientific Computing, Numerical Linear Al-
gebra, Big Data

UHD TU/e

Laura Iapichino Scientific Computing, Model Reduction UD TU/e
Barry Koren Scientific Computing, CFD HGL TU/e
Jos Maubach Scientific Computing, PDEs UD TU/e
Wil Schilders Scientific Computing, Model Reduction HGL TU/e
Jan ten Thije Boonkkamp Scientific Computing, PDEs UHD TU/e
Arris Tijsseling Scientific Computing UD TU/e
Remco Duits Mathematical Imaging UHD TU/e
Luc Florack Mathematical Imaging HGL TU/e
Andrea Fuster Mathematical Imaging UD TU/e
Jan Brandts Numerical Analysis, Numerical Linear Alge-

bra
UHD UvA

Ale Jan Homburg Dynamical Systems UHD UvA
Han Peters Complex Dynamics UHD UvA
Rob Stevenson Numerical Analysis HGL UvA
Chris Stolk Numerical Analysis, Inverse Problems UHD UvA
Jan Wiegerinck Complex Analysis HGL UvA
Holger Waalkens Hamiltonian systems and semiclassical quan-

tum mechanics
HGL RUG

Christobal Bertoglio Computational methods for medical applica-
tions/imaging

TT UD RUG

Konstantinos Efstathiou Geometry of integrable Hamiltonian fibra-
tions, chaos and diffusion, networks

TT UD RUG

Alef Sterk Bifurcation theory, applications to climate
models, analysis

TT UD RUG

Roel Verstappen Computational Fluid Dynamics, multi-scale
simulations

HGL RUG

Fred Wubs Numerical bifurcation analysis of PDEs UHD RUG
Kanat Camlibel Systems and control HGL RUG
Arjan van der Schaft Systems and control HGL RUG
Harry Trentelman Systems and control HGL RUG
Alden Waters Partial Differential Equations and applica-

tions
TT UD RUG

26

https://people.utwente.nl/c.brune
https://people.utwente.nl/b.j.geurts
https://people.utwente.nl/s.a.vangils
https://people.utwente.nl/h.g.e.meijer
https://people.utwente.nl/j.j.w.vandervegt
https://people.utwente.nl/h.j.zwart
https://www.few.vu.nl/~brink/
https://www.few.vu.nl/~janbouwe/
https://research.vu.nl/en/persons/magnus-botnan
https://www.few.vu.nl/~rplanque/
https://www.few.vu.nl/~pasquott/
https://research.vu.nl/en/persons/oliver-fabert
https://www.cs.vu.nl/~jhulshof/
https://www.few.vu.nl/~vdvorst/
https://staff.fnwi.uva.nl/a.j.homburg/
http://www.win.tue.nl/~wsgbjvdm/
http://www.win.tue.nl/~mpeletie/
http://www.win.tue.nl/~jwporteg/
https://www.tue.nl/en/research/researchers/georg-prokert/
http://www.win.tue.nl/~otse/
http://www.win.tue.nl/~martijna/
https://www.baumeiergroup.com/
http://www.win.tue.nl/~hochsten/
http://www.win.tue.nl/~liapichino/
https://www.tue.nl/universiteit/faculteiten/wiskunde-en-informatica/de-faculteit/medewerkers/detail/ep/e/d/ep-uid/20120036/
https://www.tue.nl/universiteit/faculteiten/wiskunde-en-informatica/de-faculteit/medewerkers/detail/ep/e/d/ep-uid/19982158/
http://www.win.tue.nl/~wschilde/
https://www.tue.nl/en/research/researchers/jan-ten-thije-boonkkamp/
http://www.win.tue.nl/~atijssel/
http://bmia.bmt.tue.nl/people/RDuits/
http://bmia.bmt.tue.nl/people/lflorack/
https://www.tue.nl/en/research/researchers/andrea-fuster/
http://www.uva.nl/profile/b/r/j.h.brandts/j.h.brandts.html
https://staff.fnwi.uva.nl/a.j.homburg/
http://www.uva.nl/profile/p/e/h.peters/h.peters.html
https://staff.fnwi.uva.nl/r.p.stevenson/
http://www.uva.nl/profile/s/t/c.c.stolk/c.c.stolk.html
https://staff.science.uva.nl/j.j.o.o.wiegerinck/
http://math.rug.nl/~holger/
https://www.rug.nl/staff/c.a.bertoglio/
https://efstathiou.gr/
http://www.math.rug.nl/dsmp/People/AlefSterk
http://www.math.rug.nl/~verstappen/
http://www.math.rug.nl/~wubs
http://www.math.rug.nl/~kanat
http://www.math.rug.nl/arjan
http://www.math.rug.nl/~trentelman
https://sites.google.com/site/amswatersmath/home


Daan Crommelin Stochastic multiscale modeling, Uncertainty
quantification

HGL CWI

Ute Ebert Multiscale modeling, Numerical methods for
plasma physics

HGL CWI

Kees Oosterlee Computational finance, Numerical analysis HGL CWI
Joost Batenburg Computational imaging and tomography HGL CWI
Enrico Camporeale Numerical methods for plasma physics, Ma-

chine Learning
UD CWI

Benjamin Sanderse Uncertainty quantification, Computational
fluid dynamics

TT CWI

Svetlana Dubinkina Data assimilation, Computational fluid dy-
namics

TT CWI

Felix Lucka Mathematics and Algorithms for 3D Imaging
of Dynamic Processes

TT CWI

Arnold Heemink Stochastic Differential Equations HGL TUD
Wim van Horssen Partial Differential Equations UHD TUD
Hai Xiang Lin Scientific Computing, Parallel Computing UHD TUD
Henk Schuttelaars Shallow Water Equations UD TUD
Martin Verlaan Data Assimilation, Shallow Water Equations HGL TUD
Johan Dubbeldam Dynamical Systems UD TUD
Jacob Van der Woude Control Theory UHD TUD
Bernard Meulenbroek Porous Media Flow UD TUD
Kees Vuik Scientific Computing, Partial Differential

Equations
HGL TUD

Kees Oosterlee Scientific Computing, Partial Differential
Equations

HGL TUD

Martin van Gijzen Scientific Computing, Image Processing UHD TUD
Fred Vermole Health, Partial Differential Equations UHD TUD
Domenico Lahaye Scientific Computing, Industrial Problems UD TUD
Jennifer Ryan Discontinuous Galerkin UD TUD
Duncan van der Heul Computational Fluid Dynamics UD TUD
Neil Budko Scientific Computing, Industrial Problems UD TUD
Eric Deleersnijder Computational Fluid Dynamics HGL TUD
emus Hanea Data Assimilation, Shallow Water Equations UD (onbe-

zoldigd)
TUD

Ramses van der Toorn Partial Differential Equations UD TUD
Arjen Doelman partial differential equations, dynamical sys-

tems, stability theory, applications in ecology
HGL LU

Roeland Merks scientific computing, multiple scales,
stochastic dynamics

HGL LU

Marcel de Jeu abstract harmonic analysis, representation
theory, ordered vector spaces and algebras,
special functions

UHD LU

Vivi Rottschäfer partial differential equations, dynamical sys-
tems, geometric singular perturbation theory,
applications from pharmacology and ecology

UHD LU

Hermen Jan Hupkes lattice differential equations, delay differen-
tial equations, discretization schemes, noisy
patterns, economic modeling

UHD LU

Martina Chirilus-Bruckner nonlinear partial differential equations, waves
and patterns, dynamical systems, modula-
tion equations, inverse spectral theory

TT UD LU

Onno van Gaans stochastic differential equations, partially or-
dered vector spaces, delay differential equa-
tions

UD LU

Sander Hille dynamical systems, stochastic perturbation,
mathematical biology

UD LU

Rob Bisseling high-performance computing, sparse matrix
computations, bioinformatics, combinatorial
methods

HGL UU

Jason Frank numerical analysis, multiscale modelling,
data assimilation, complex systems

HGL UU
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https://www.cwi.nl/people/daan-crommelin
https://www.cwi.nl/people/ute-ebert
https://www.cwi.nl/people/kees-oosterlee
https://www.cwi.nl/people/joost-batenburg
https://www.cwi.nl/people/enrico-camporeale
https://www.cwi.nl/people/benjamin-sanderse
https://www.cwi.nl/people/svetlana-dubinkina
https://www.cwi.nl/people/felix-lucka
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/mathematical-physics/people/aw-heemink/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/mathematical-physics/people/wt-van-horssen/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/mathematical-physics/people/hx-lin/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/mathematical-physics/people/hm-schuttelaars/
https://www.deltares.nl/en/experts/martin-verlaan/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/mathematical-physics/people/jla-dubbeldam/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/mathematical-physics/people/jw-van-der-woude/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/mathematical-physics/people/bj-meulenbroek/
http://ta.twi.tudelft.nl/nw/users/vuik/
http://ta.twi.tudelft.nl/mf/users/oosterle/
http://ta.twi.tudelft.nl/nw/users/gijzen/
http://ta.twi.tudelft.nl/nw/users/vermolen/
http://ta.twi.tudelft.nl/nw/users/domenico/
https://people.uea.ac.uk/en/persons/jennifer-ryan
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/numerical-analysis/people/dr-van-der-heul/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/numerical-analysis/people/nv-budko/
https://perso.uclouvain.be/eric.deleersnijder/cms/
http://ta.twi.tudelft.nl/nw/users/matthias/
https://www.tudelft.nl/staff/r.vandertoorn/
http://www.math.leidenuniv.nl/~doelman/
https://www.universiteitleiden.nl/medewerkers/roeland-merks#tab-1
https://www.math.leidenuniv.nl/~mdejeu/
http://www.math.leidenuniv.nl/~vivi/
http://www.math.leidenuniv.nl/~hhupkes/
http://pub.math.leidenuniv.nl/~chirilusbrucknerm/
http://www.math.leidenuniv.nl/~vangaans/
http://www.math.leidenuniv.nl/~shille/
http://www.staff.science.uu.nl/~bisse101/
http://www.staff.science.uu.nl/~frank011/


Heinz Hanßmann Hamiltonian mechanics, integrable systems UD UU
Carolin Kreisbeck variational methods, homogenization, multi-

scale modelling of materials
UD UU

Yuri Kuznetsov bifurcation theory and computation HGL UU/UT
Tristan van Leeuwen numerical analysis of inverse problems, seis-

mic inversion, medical imaging
UD UU

Sjoerd Verduyn Lunel functional and delay differential equations,
applied analysis, time-series analysis, math-
ematical biology

HGL UU

Paul Zegeling numerical methods for PDEs, moving mesh
methods, numerical methods for fractional
DEs, flows in porous media

UHD UU

Stefanie Sonner infinite dimensional dynamical systems UD RUN
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http://www.staff.science.uu.nl/~hanss102/
https://www.uu.nl/staff/CCKreisbeck
https://www.staff.science.uu.nl/~kouzn101/
https://www.uu.nl/staff/TvanLeeuwen
http://www.staff.science.uu.nl/~verdu003/
http://www.staff.science.uu.nl/~zegel101/https://www.uu.nl/staff/PAZegeling
https://www.ru.nl/english/people/sonner-s/
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